116 research outputs found

    Long-distance potentials: An approach to the multiple-minima problem in ligand-receptor interaction

    Get PDF
    This is the publisher's version, also available electronically from "http://peds.oxfordjournals.org/".The multiple-minima problem is a classical problem in molecular structure prediction. For ligand-receptor systems, a possible direction to alleviate this major obstacle is to simplify the objective function (intermolecular energy) and smooth its profile. We introduce long-distance atomatom potentials for ligand-receptor interactions. The longer ranges result in averaging of the energy potential at a given point. Our simplified force field is based on a trivial empirical representation of interatomic interactions as a step function. We demonstrate that the intermolecular energy calculation by a systematic search with such a simplified long-distance force field delivers the global minimum (crystallographically determined position of the ligand) by radically suppressing local minima (or false-positive fits). The effectiveness of the approach is demonstrated on different molecular complexes of known structure

    Main-chain complementarity in protein-protein recognition

    Get PDF
    This is the publisher's version, also available electronically from "http://peds.oxfordjournals.org".We present a statistical analysis of protein structures based on interatomic Ca distances. The overall distance distributions reflect in detail the contents of sequence-specific substructures maintained by local interactions (such as α-helixes) and longer range interactions (such as disulfide bridges and β-sheets). We also show that a volume scaling of the distances makes distance distributions for protein chains of different length superimposable. Distance distributions were also calculated specifically for amino acids separated by a given number of residues. Specific features in these distributions are visible for sequence separations of up to 20 amino acid residues. A simple representation, which preserves most of the information in the distance distributions, was obtained using six parameters only. The parameters give rise to canonical distance intervals and when predicting coarse-grained distance constraints by methods such as data-driven artificial neural networks, these should preferably be selected from these intervals. We discuss the use of the six parameters for determining or reconstructing 3-D protein structures

    Low-resolution structural modeling of protein interactome

    Get PDF
    Structural characterization of protein–protein interactions across the broad spectrum of scales is key to our understanding of life at the molecular level. Low-resolution approach to protein interactions is needed for modeling large interaction networks, given the significant level of uncertainties in large biomolecular systems and the high-throughput nature of the task. Since only a fraction of protein structures in interactome are determined experimentally, protein docking approaches are increasingly focusing on modeled proteins. Current rapid advancement of template-based modeling of protein–protein complexes is following a long standing trend in structure prediction of individual proteins. Protein–protein templates are already available for almost all interactions of structurally characterized proteins, and about one third of such templates are likely correct

    GRAMM-X public web server for protein-protein docking

    Get PDF
    This is the publisher's version, also available electronically from "http://nar.oxfordjournals.org".Protein docking software GRAMM-X and its web interface (http://vakser.bioinformatics.ku.edu/resources/gramm/grammx) extend the original GRAMM Fast Fourier Transformation methodology by employing smoothed potentials, refinement stage, and knowledge-based scoring. The web server frees users from complex installation of database-dependent parallel software and maintaining large hardware resources needed for protein docking simulations. Docking problems submitted to GRAMM-X server are processed by a 320 processor Linux cluster. The server was extensively tested by benchmarking, several months of public use, and participation in the CAPRI server track

    Sequence composition and environment effects on residue fluctuations in protein structures

    Get PDF
    The spectrum and scale of fluctuations in protein structures affect the range of cell phenomena, including stability of protein structures or their fragments, allosteric transitions and energy transfer. The study presents a statistical-thermodynamic analysis of relationship between the sequence composition and the distribution of residue fluctuations in protein-protein complexes. A one-node-per residue elastic network model accounting for the nonhomogeneous protein mass distribution and the inter-atomic interactions through the renormalized inter-residue potential is developed. Two factors, a protein mass distribution and a residue environment, were found to determine the scale of residue fluctuations. Surface residues undergo larger fluctuations than core residues, showing agreement with experimental observations. Ranking residues over the normalized scale of fluctuations yields a distinct classification of amino acids into three groups. The structural instability in proteins possibly relates to the high content of the highly fluctuating residues and a deficiency of the weakly fluctuating residues in irregular secondary structure elements (loops), chameleon sequences and disordered proteins. Strong correlation between residue fluctuations and the sequence composition of protein loops supports this hypothesis. Comparing fluctuations of binding site residues (interface residues) with other surface residues shows that, on average, the interface is more rigid than the rest of the protein surface and Gly, Ala, Ser, Cys, Leu and Trp have a propensity to form more stable docking patches on the interface. The findings have broad implications for understanding mechanisms of protein association and stability of protein structures.Comment: 8 pages, 4 figure

    DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Get PDF
    Background: Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom) pairs in the non-interaction state. Results: The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK) potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions: A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of the potentials

    Chasing Funnels on Protein-Protein Energy Landscapes at Different Resolutions

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1529/biophysj.108.132977.Studies of intermolecular energy landscapes are important for understanding protein association and adequate modeling of protein interactions. Landscape representation at different resolutions can be used for the refinement of docking predictions and detection of macro characteristics, like the binding funnel. A representative set of protein-protein complexes was used to systematically map the intermolecular landscape by grid-based docking. The change of the resolution was achieved by varying the range of the potential, according to the variable resolution GRAMM methodology. A formalism was developed to consistently parameterize the potential and describe essential characteristics of the landscape. The results of gradual landscape smoothing, from high to low resolution, indicate that i), the number of energy basins, the landscape ruggedness, and the slope decrease accordingly; ii), the number of near-native matches, defined as those inside the funnel, increases until the trend breaks down at critical resolution; the rate of the increase and the critical resolution are specific to the type of a complex (enzyme inhibitor, antigen-antibody, and other), reflect known underlying recognition factors, and correlate with earlier determined estimates of the funnel size; iii), the native/nonnative energy gap, a major characteristic of the energy minima hierarchy, remains constant; and iv), the putative funnel (defined as the deepest basin) has the largest average depth-related ruggedness and slope, at all resolutions. The results facilitate better understanding of the binding landscapes and suggest directions for implementation in practical docking protocols

    Side-chain conformational changes upon protein-protein association

    Get PDF
    Conformational changes upon protein-protein association are the key element of the binding mechanism. The study presents a systematic large-scale analysis of such conformational changes in the side chains. The results indicate that short and long side chains have different propensities for the conformational changes. Long side chains with three or more dihedral angles are often subject to large conformational transition. Shorter residues with one or two dihedral angles typically undergo local conformational changes not leading to a conformational transition. The relationship between the local readjustments and the equilibrium fluctuations of a side chain around its unbound conformation is suggested. Most of the side chains undergo larger changes in the dihedral angle most distant from the backbone. The amino acids with symmetric aromatic (Phe and Tyr) and charged (Asp and Glu) groups show the opposite trend where the near-backbone dihedral angles change the most. The frequencies of the core-to-surface interface transitions of six nonpolar residues and Tyr exceed the frequencies of the opposite, surface-to-core transitions. The binding increases both polar and nonpolar interface areas. However, the increase of the nonpolar area is larger for all considered classes of protein complexes. The results suggest that the protein association perturbs the unbound interfaces to increase the hydrophobic forces. The results facilitate better understanding of the conformational changes in proteins and suggest directions for efficient conformational sampling in docking protocols.Comment: 21 pages, 6 figure

    Blind Prediction of Interfacial Water Positions in CAPRI

    Get PDF
    We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the CAPRI (Critical Assessment of Predicted Interactions) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions – 20 groups submitted a total of 195 models – were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high or medium quality docking models – a very good docking performance per se – only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes
    • …
    corecore